\end{align*}\]. The \(\mathbf{\hat{k}}\) component of this vector is zero only if \(v = 0\) or \(v = \pi\). Notice that vectors, \[\vecs r_u = \langle - (2 + \cos v)\sin u, \, (2 + \cos v) \cos u, 0 \rangle \nonumber \], \[\vecs r_v = \langle -\sin v \, \cos u, \, - \sin v \, \sin u, \, \cos v \rangle \nonumber \], exist for any choice of \(u\) and \(v\) in the parameter domain, and, \[ \begin{align*} \vecs r_u \times \vecs r_v &= \begin{vmatrix} \mathbf{\hat{i}}& \mathbf{\hat{j}}& \mathbf{\hat{k}} \\ -(2 + \cos v)\sin u & (2 + \cos v)\cos u & 0\\ -\sin v \, \cos u & - \sin v \, \sin u & \cos v \end{vmatrix} \\[4pt] &= [(2 + \cos v)\cos u \, \cos v] \mathbf{\hat{i}} + [2 + \cos v) \sin u \, \cos v] \mathbf{\hat{j}} + [(2 + \cos v)\sin v \, \sin^2 u + (2 + \cos v) \sin v \, \cos^2 u]\mathbf{\hat{k}} \\[4pt] &= [(2 + \cos v)\cos u \, \cos v] \mathbf{\hat{i}} + [(2 + \cos v) \sin u \, \cos v]\mathbf{\hat{j}} + [(2 + \cos v)\sin v ] \mathbf{\hat{k}}. Describe the surface with parameterization, \[\vecs{r} (u,v) = \langle 2 \, \cos u, \, 2 \, \sin u, \, v \rangle, \, 0 \leq u \leq 2\pi, \, -\infty < v < \infty \nonumber \]. Now consider the vectors that are tangent to these grid curves. Stokes' theorem is the 3D version of Green's theorem. In particular, they are used for calculations of. \end{align*}\], By Equation \ref{equation1}, the surface area of the cone is, \[ \begin{align*}\iint_D ||\vecs t_u \times \vecs t_v|| \, dA &= \int_0^h \int_0^{2\pi} kv \sqrt{1 + k^2} \,du\, dv \\[4pt] &= 2\pi k \sqrt{1 + k^2} \int_0^h v \,dv \\[4pt] &= 2 \pi k \sqrt{1 + k^2} \left[\dfrac{v^2}{2}\right]_0^h \\[4pt] \\[4pt] &= \pi k h^2 \sqrt{1 + k^2}. and MathJax takes care of displaying it in the browser. If \(v = 0\) or \(v = \pi\), then the only choices for \(u\) that make the \(\mathbf{\hat{j}}\) component zero are \(u = 0\) or \(u = \pi\). &= \langle 4 \, \cos \theta \, \sin^2 \phi, \, 4 \, \sin \theta \, \sin^2 \phi, \, 4 \, \cos^2 \theta \, \cos \phi \, \sin \phi + 4 \, \sin^2 \theta \, \cos \phi \, \sin \phi \rangle \\[4 pt] For each point \(\vecs r(a,b)\) on the surface, vectors \(\vecs t_u\) and \(\vecs t_v\) lie in the tangent plane at that point. Notice that \(\vecs r_u = \langle 0,0,0 \rangle\) and \(\vecs r_v = \langle 0, -\sin v, 0\rangle\), and the corresponding cross product is zero. &= \int_0^{\pi/6} \int_0^{2\pi} 16 \, \cos^2\phi \sqrt{\sin^4\phi + \cos^2\phi \, \sin^2\phi} \, d\theta \, d\phi \\ The definition of a smooth surface parameterization is similar. Since the original rectangle in the \(uv\)-plane corresponding to \(S_{ij}\) has width \(\Delta u\) and length \(\Delta v\), the parallelogram that we use to approximate \(S_{ij}\) is the parallelogram spanned by \(\Delta u \vecs t_u(P_{ij})\) and \(\Delta v \vecs t_v(P_{ij})\). The Divergence Theorem can be also written in coordinate form as. Flux = = S F n d . Since it is time-consuming to plot dozens or hundreds of points, we use another strategy. Letting the vector field \(\rho \vecs{v}\) be an arbitrary vector field \(\vecs{F}\) leads to the following definition. Dont forget that we need to plug in for \(x\), \(y\) and/or \(z\) in these as well, although in this case we just needed to plug in \(z\). The result is displayed in the form of the variables entered into the formula used to calculate the Surface Area of a revolution. Find the mass of the piece of metal. \(r \, \cos \theta \, \sin \phi, \, r \, \sin \theta \, \sin \phi, \, r \, \cos \phi \rangle, \, 0 \leq \theta < 2\pi, \, 0 \leq \phi \leq \pi.\), \(\vecs t_{\theta} = \langle -r \, \sin \theta \, \sin \phi, \, r \, \cos \theta \, \sin \phi, \, 0 \rangle\), \(\vecs t_{\phi} = \langle r \, \cos \theta \, \cos \phi, \, r \, \sin \theta \, \cos \phi, \, -r \, \sin \phi \rangle.\), \[ \begin{align*}\vecs t_{\phi} \times \vecs t_{\theta} &= \langle r^2 \cos \theta \, \sin^2 \phi, \, r^2 \sin \theta \, \sin^2 \phi, \, r^2 \sin^2 \theta \, \sin \phi \, \cos \phi + r^2 \cos^2 \theta \, \sin \phi \, \cos \phi \rangle \\[4pt] &= \langle r^2 \cos \theta \, \sin^2 \phi, \, r^2 \sin \theta \, \sin^2 \phi, \, r^2 \sin \phi \, \cos \phi \rangle. With a parameterization in hand, we can calculate the surface area of the cone using Equation \ref{equation1}. Notice that the corresponding surface has no sharp corners. Surface Area Calculator \nonumber \]. In order to show the steps, the calculator applies the same integration techniques that a human would apply. Double Integral calculator with Steps & Solver The program that does this has been developed over several years and is written in Maxima's own programming language. Surfaces can be parameterized, just as curves can be parameterized. Surface Area Calculator - GeoGebra The gesture control is implemented using Hammer.js. You can do so using our Gauss law calculator with two very simple steps: Enter the value 10 n C 10\ \mathrm{nC} 10 nC ** in the field "Electric charge Q". By Equation \ref{scalar surface integrals}, \[\begin{align*} \iint_S 5 \, dS &= 5 \iint_D \sqrt{1 + 4u^2} \, dA \\ It is now time to think about integrating functions over some surface, \(S\), in three-dimensional space. Direct link to Surya Raju's post What about surface integr, Posted 4 years ago. Integral Calculator | Best online Integration by parts Calculator Then, the unit normal vector is given by \(\vecs N = \dfrac{\vecs t_u \times \vecs t_v}{||\vecs t_u \times \vecs t_v||}\) and, from Equation \ref{surfaceI}, we have, \[\begin{align*} \int_C \vecs F \cdot \vecs N\, dS &= \iint_S \vecs F \cdot \dfrac{\vecs t_u \times \vecs t_v}{||\vecs t_u \times \vecs t_v||} \,dS \\[4pt] Surface integral calculator with steps - Math Solutions We have derived the familiar formula for the surface area of a sphere using surface integrals. Put the value of the function and the lower and upper limits in the required blocks on the calculator then press the submit button. For scalar line integrals, we chopped the domain curve into tiny pieces, chose a point in each piece, computed the function at that point, and took a limit of the corresponding Riemann sum. \nonumber \], As in Example, the tangent vectors are \(\vecs t_{\theta} = \langle -3 \, \sin \theta \, \sin \phi, \, 3 \, \cos \theta \, \sin \phi, \, 0 \rangle \) and \( \vecs t_{\phi} = \langle 3 \, \cos \theta \, \cos \phi, \, 3 \, \sin \theta \, \cos \phi, \, -3 \, \sin \phi \rangle,\) and their cross product is, \[\vecs t_{\phi} \times \vecs t_{\theta} = \langle 9 \, \cos \theta \, \sin^2 \phi, \, 9 \, \sin \theta \, \sin^2 \phi, \, 9 \, \sin \phi \, \cos \phi \rangle. The component of the vector \(\rho v\) at P in the direction of \(\vecs{N}\) is \(\rho \vecs v \cdot \vecs N\) at \(P\). On the other hand, when we defined vector line integrals, the curve of integration needed an orientation. For scalar surface integrals, we chop the domain region (no longer a curve) into tiny pieces and proceed in the same fashion. This book makes you realize that Calculus isn't that tough after all. To approximate the mass flux across \(S\), form the sum, \[\sum_{i=1}m \sum_{j=1}^n (\rho \vecs{v} \cdot \vecs{N}) \Delta S_{ij}. The arc length formula is derived from the methodology of approximating the length of a curve. These grid lines correspond to a set of grid curves on surface \(S\) that is parameterized by \(\vecs r(u,v)\). Example 1. Introduction. Surface integrals of scalar functions. This surface has parameterization \(\vecs r(u,v) = \langle r \, \cos u, \, r \, \sin u, \, v \rangle, \, 0 \leq u < 2\pi, \, 0 \leq v \leq h.\), The tangent vectors are \(\vecs t_u = \langle -r \, \sin u, \, r \, \cos u, \, 0 \rangle \) and \(\vecs t_v = \langle 0,0,1 \rangle\). &= \int_0^{\sqrt{3}} \int_0^{2\pi} u \, dv \, du \\ Double Integral calculator with Steps & Solver It can be also used to calculate the volume under the surface. I have been tasked with solving surface integral of ${\bf V} = x^2{\bf e_x}+ y^2{\bf e_y}+ z^2 {\bf e_z}$ on the surface of a cube bounding the region $0\le x,y,z \le 1$. where \(S\) is the surface with parameterization \(\vecs r(u,v) = \langle u, \, u^2, \, v \rangle\) for \(0 \leq u \leq 2\) and \(0 \leq v \leq u\). ), If you understand double integrals, and you understand how to compute the surface area of a parametric surface, you basically already understand surface integrals. Double integrals also can compute volume, but if you let f(x,y)=1, then double integrals boil down to the capabilities of a plain single-variable definite integral (which can compute areas). tothebook. Solution Note that to calculate Scurl F d S without using Stokes' theorem, we would need the equation for scalar surface integrals. What if you are considering the surface of a curved airplane wing with variable density, and you want to find its total mass? Use a surface integral to calculate the area of a given surface. A parameterization is \(\vecs r(u,v) = \langle \cos u, \, \sin u, \, v \rangle, 0 \leq u \leq 2\pi, \, 0 \leq v \leq 3.\). Surface area double integral calculator - Math Practice Here is the evaluation for the double integral. We can also find different types of surfaces given their parameterization, or we can find a parameterization when we are given a surface. Then I would highly appreciate your support. Therefore, \(\vecs t_x + \vecs t_y = \langle -1,-2,1 \rangle\) and \(||\vecs t_x \times \vecs t_y|| = \sqrt{6}\). This is analogous to the flux of two-dimensional vector field \(\vecs{F}\) across plane curve \(C\), in which we approximated flux across a small piece of \(C\) with the expression \((\vecs{F} \cdot \vecs{N}) \,\Delta s\). Therefore, the pyramid has no smooth parameterization. d S, where F = z, x, y F = z, x, y and S is the surface as shown in the following figure. Therefore, the surface is the elliptic paraboloid \(x^2 + y^2 = z\) (Figure \(\PageIndex{3}\)). example. Since the surface is oriented outward and \(S_1\) is the top of the object, we instead take vector \(\vecs t_v \times \vecs t_u = \langle 0,0,v\rangle\). In general, surfaces must be parameterized with two parameters. Both mass flux and flow rate are important in physics and engineering. Without loss of generality, we assume that \(P_{ij}\) is located at the corner of two grid curves, as in Figure \(\PageIndex{9}\). First, lets look at the surface integral of a scalar-valued function. In this sense, surface integrals expand on our study of line integrals. Sometimes, the surface integral can be thought of the double integral. This results in the desired circle (Figure \(\PageIndex{5}\)). Some surfaces cannot be oriented; such surfaces are called nonorientable. Recall that when we defined a scalar line integral, we did not need to worry about an orientation of the curve of integration. Put the value of the function and the lower and upper limits in the required blocks on the calculator t, Surface Area Calculator Calculus + Online Solver With Free Steps. Use the standard parameterization of a cylinder and follow the previous example. 6.6.1 Find the parametric representations of a cylinder, a cone, and a sphere. When you're done entering your function, click "Go! Solve Now. There were only two smooth subsurfaces in this example, but this technique extends to finitely many smooth subsurfaces. The region \(S\) will lie above (in this case) some region \(D\) that lies in the \(xy\)-plane. \nonumber \]. To obtain a parameterization, let \(\alpha\) be the angle that is swept out by starting at the positive z-axis and ending at the cone, and let \(k = \tan \alpha\). You can accept it (then it's input into the calculator) or generate a new one. That is: To make the work easier I use the divergence theorem, to replace the surface integral with a . Arc Length Calculator - Symbolab Area of an ellipse Calculator - High accuracy calculation Surface integral of a vector field over a surface. \nonumber \]. Notice that this parameterization involves two parameters, \(u\) and \(v\), because a surface is two-dimensional, and therefore two variables are needed to trace out the surface. We see that \(S_2\) is a circle of radius 1 centered at point \((0,0,4)\), sitting in plane \(z = 4\). For example, the graph of paraboloid \(2y = x^2 + z^2\) can be parameterized by \(\vecs r(x,y) = \left\langle x, \dfrac{x^2+z^2}{2}, z \right\rangle, \, 0 \leq x < \infty, \, 0 \leq z < \infty\). \nonumber \]. To confirm this, notice that, \[\begin{align*} x^2 + y^2 &= (u \, \cos v)^2 + (u \, \sin v)^2 \\[4pt] &= u^2 \cos^2 v + u^2 sin^2 v \\[4pt] &= u^2 \\[4pt] &=z\end{align*}\]. We have seen that a line integral is an integral over a path in a plane or in space. In other words, we scale the tangent vectors by the constants \(\Delta u\) and \(\Delta v\) to match the scale of the original division of rectangles in the parameter domain. An extremely well-written book for students taking Calculus for the first time as well as those who need a refresher. &= \sqrt{6} \int_0^4 \int_0^2 x^2 y (1 + x + 2y) \, dy \,dx \\[4pt] It also calculates the surface area that will be given in square units. \nonumber \]. Surface integrals of scalar fields. Step #5: Click on "CALCULATE" button. Describe the surface integral of a scalar-valued function over a parametric surface. However, weve done most of the work for the first one in the previous example so lets start with that. Now, because the surface is not in the form \(z = g\left( {x,y} \right)\) we cant use the formula above. Surface integral through a cube. - Mathematics Stack Exchange Their difference is computed and simplified as far as possible using Maxima. Similarly, the average value of a function of two variables over the rectangular We now show how to calculate the ux integral, beginning with two surfaces where n and dS are easy to calculate the cylinder and the sphere. For example, this involves writing trigonometric/hyperbolic functions in their exponential forms. [2v^3u + v^2u - vu^2 - u^2]\right|_0^3 \, dv \\[4pt] &= \int_0^4 (6v^3 + 3v^2 - 9v - 9) \, dv \\[4pt] &= \left[ \dfrac{3v^4}{2} + v^3 - \dfrac{9v^2}{2} - 9v\right]_0^4\\[4pt] &= 340. However, unlike the previous example we are putting a top and bottom on the surface this time. and \(||\vecs t_u \times \vecs t_v || = \sqrt{\cos^2 u + \sin^2 u} = 1\). Do my homework for me. How to calculate the surface integral of the vector field: $$\iint\limits_{S^+} \vec F\cdot \vec n {\rm d}S $$ Is it the same thing to: $$\iint\limits_{S^+}x^2{\rm d}y{\rm d}z+y^2{\rm d}x{\rm d}z+z^2{\rm d}x{\rm d}y$$ There is another post here with an answer by@MichaelE2 for the cases when the surface is easily described in parametric form . The definition of a scalar line integral can be extended to parameter domains that are not rectangles by using the same logic used earlier. Surface integral - Wikipedia \nonumber \]. Given that the thermal conductivity of cast iron is 55, find the heat flow across the boundary of the solid if this boundary is oriented outward. The Integral Calculator lets you calculate integrals and antiderivatives of functions online for free! We know the formula for volume of a sphere is ( 4 / 3) r 3, so the volume we have computed is ( 1 / 8) ( 4 / 3) 2 3 = ( 4 / 3) , in agreement with our answer. You can use this calculator by first entering the given function and then the variables you want to differentiate against. Did this calculator prove helpful to you? What if you have the temperature for every point on the curved surface of the earth, and you want to figure out the average temperature? is the divergence of the vector field (it's also denoted ) and the surface integral is taken over a closed surface. 2.4 Arc Length of a Curve and Surface Area - OpenStax If parameterization \(\vec{r}\) is regular, then the image of \(\vec{r}\) is a two-dimensional object, as a surface should be. surface integral Natural Language Math Input Use Math Input Mode to directly enter textbook math notation. To get such an orientation, we parameterize the graph of \(f\) in the standard way: \(\vecs r(x,y) = \langle x,\, y, \, f(x,y)\rangle\), where \(x\) and \(y\) vary over the domain of \(f\). Step 2: Compute the area of each piece. A cast-iron solid ball is given by inequality \(x^2 + y^2 + z^2 \leq 1\). When the integrand matches a known form, it applies fixed rules to solve the integral (e.g. partial fraction decomposition for rational functions, trigonometric substitution for integrands involving the square roots of a quadratic polynomial or integration by parts for products of certain functions). Computing a surface integral is almost identical to computing surface area using a double integral, except that you stick a function inside the integral. With the idea of orientable surfaces in place, we are now ready to define a surface integral of a vector field. Although plotting points may give us an idea of the shape of the surface, we usually need quite a few points to see the shape. So, we want to find the center of mass of the region below. If a thin sheet of metal has the shape of surface \(S\) and the density of the sheet at point \((x,y,z)\) is \(\rho(x,y,z)\) then mass \(m\) of the sheet is, \[\displaystyle m = \iint_S \rho (x,y,z) \,dS. We assume this cone is in \(\mathbb{R}^3\) with its vertex at the origin (Figure \(\PageIndex{12}\)). What people say 95 percent, aND NO ADS, and the most impressive thing is that it doesn't shows add, apart from that everything is great. perform a surface integral. &= 32 \pi \int_0^{\pi/6} \cos^2\phi \, \sin \phi \sqrt{\sin^2\phi + \cos^2\phi} \, d\phi \\ { "16.6E:_Exercises_for_Section_16.6" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "16.00:_Prelude_to_Vector_Calculus" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.01:_Vector_Fields" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.02:_Line_Integrals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.03:_Conservative_Vector_Fields" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.04:_Greens_Theorem" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.05:_Divergence_and_Curl" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.06:_Surface_Integrals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.07:_Stokes_Theorem" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.08:_The_Divergence_Theorem" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.09:_Chapter_16_Review_Exercises" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Functions_and_Graphs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Limits" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Derivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Applications_of_Derivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Applications_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Techniques_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Introduction_to_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Sequences_and_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Power_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Parametric_Equations_and_Polar_Coordinates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Vectors_in_Space" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Vector-Valued_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Differentiation_of_Functions_of_Several_Variables" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Multiple_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Vector_Calculus" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Second-Order_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Appendices" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "surface area", "surface integrals", "Parametric Surfaces", "parameter domain", "authorname:openstax", "M\u00f6bius strip", "flux integral", "grid curves", "heat flow", "mass flux", "orientation of a surface", "parameter space", "parameterized surface", "parametric surface", "regular parameterization", "surface integral", "surface integral of a scalar-valued function", "surface integral of a vector field", "license:ccbyncsa", "showtoc:no", "program:openstax", "licenseversion:40", "source@https://openstax.org/details/books/calculus-volume-1", "author@Gilbert Strang", "author@Edwin \u201cJed\u201d Herman" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FCalculus%2FBook%253A_Calculus_(OpenStax)%2F16%253A_Vector_Calculus%2F16.06%253A_Surface_Integrals, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Example \(\PageIndex{1}\): Parameterizing a Cylinder, Example \(\PageIndex{2}\): Describing a Surface, Example \(\PageIndex{3}\): Finding a Parameterization, Example \(\PageIndex{4}\): Identifying Smooth and Nonsmooth Surfaces, Definition: Smooth Parameterization of Surface, Example \(\PageIndex{5}\): Calculating Surface Area, Example \(\PageIndex{6}\): Calculating Surface Area, Example \(\PageIndex{7}\): Calculating Surface Area, Definition: Surface Integral of a Scalar-Valued Function, surface integral of a scalar-valued functi, Example \(\PageIndex{8}\): Calculating a Surface Integral, Example \(\PageIndex{9}\): Calculating the Surface Integral of a Cylinder, Example \(\PageIndex{10}\): Calculating the Surface Integral of a Piece of a Sphere, Example \(\PageIndex{11}\): Calculating the Mass of a Sheet, Example \(\PageIndex{12}\):Choosing an Orientation, Example \(\PageIndex{13}\): Calculating a Surface Integral, Example \(\PageIndex{14}\):Calculating Mass Flow Rate, Example \(\PageIndex{15}\): Calculating Heat Flow, Surface Integral of a Scalar-Valued Function, source@https://openstax.org/details/books/calculus-volume-1, surface integral of a scalar-valued function, status page at https://status.libretexts.org.